Kategorien
Allgemeines Diplomarbeit

Thesen zur Diplomarbeit

Kurse Zertifizierung

Thesen zur Diplomarbeit

vorgelegt von: Michael Leidig

Studiengang: Elektrotechnik

Studienrichtung: Festkörperelektronik

Themen-Nr.: 141 – 93D / 05

Thema der Diplomarbeit: Untersuchung von Strategien zur Erzeugung von Gittern für die zweidimensionale Device-Simulation

1.Heterojunction Bipolartransistoren (HBT) stellen heute eine mögliche Alternative dar, um Hochgeschwindigkeitsbauelemente und -schaltungen zu realisieren. Die technologische Kompatibilität von Si/SiGe-HBTs mit der konventionellen Si-VLSI- Technologie macht dieses Bauelementekonzept besonders attraktiv.

2.Es wird der Grundaufbau von HBTs vorgestellt und die Grundgedanken der Wirkungsweise von diesen Bauelementen werden erläutert und zusammengefaßt.

3.Die dynamische Devicesimulation von HBTs ist aufgrund der Anwendungsmöglichkeiten von besonderem Interesse. Als Ausgangspunkt der Betrachtungen diente der eindimensionale statische Devicesimulator HETRA, welcher auf der Lösung der Drift- Diffussions- Gleichungen nach der Methode der finiten Differenzen beruht.

4.Aus den Techniken der Kleinsignalanalyse wurde die Sinussoidal-Steady-State Analysis ausgewählt und in den Devicesimulator HETRA implementiert.

5.Im Kleinsignalfall werden die Kontinuitätsgleichungen der Elektronen und Löcher auf geeignete Weise linearisiert. Die Herleitung des Modellkonzepts wird ausführlich erläutert und vorgestellt.

6.Die Basis- und Kollektorrandbedingungen und Gleichungen zur Berechnung von Basisstrom und Kollektorstrom werden aufgestellt. Hierbei werden besondere Probleme bezüglich parasitärer Elemente diskutiert. Im Anschluss daran werden die y-Parameter berechnet, graphisch dargestellt und mit gemessenen Werten verglichen.

7.Auf der Grundlage des erstellten Algorithmus werden Strategien zur Erzeugung von Gittern erprobt. Die Ergebnisse dieser Untersuchungen werden graphisch dargestellt und bewertet.

Bei Fragen bitte Kontakt aufnehmen.

Diplomarbeit erstellt an: Technische Universität Ilmenau
Kategorien
Aufbau und Wirkungsweise Diplomarbeit

Prinzipielle Wirkungsweise

2 Aufbau und Wirkungsweise von Si/Si1-xGex Heterojunction Bipolartransistoren (HBTs)

2.1 Prinzipielle Wirkungsweise

Es gibt viele verschiedene Konzepte von HBTs, welche sich in der Reihenfolge und der Anzahl der einzelnen verwendeten Halbleiter- und Isolatorschichten unterscheiden. In der Literatur (1), (2) und (3) kann man einen Überblick über die wichtigsten Ausführungsformen finden.

Die Tatsache, daß die hier betrachteten Si/Si1-xGex Heterostruktursysteme eine Variation der Bandabstandsdifferenzen aufweisen ( ΔEg = Eg,Si – Eg,SiGe), führt zu einer unterschiedlich hohen Energiebarriere für die Elektronen und Löcher am Si/Si1-xGex Heteroübergang. Gemeinsam mit dem elektrischen Feld wirkt diese Energiebarriere auf die freien Ladungsträger im Halbleiterkristall. Damit lassen sich Verteilung und Fluß der Ladungsträger im Halbleiterkristall steuern.

In einem HBT erfolgt ein Stromfluß und auch der Ladungsträgertransport senkrecht zu der jeweiligen Heterogrenzfläche. Dabei soll die Verteilung und der Fluß sowohl der Elektronen als auch der Löcher beeinflußt werden. Durch eine praktisch brauchbare Kombination von Energiegapvariationen und elektrischen Feldern besteht die Möglichkeit, innerhalb breiter Grenzen die auf die Elektronen und Löcher wirkenden Kräfte zu beeinflussen. Damit erhält man zusätzliche Freiheitsgrade beim Design der Bauelemente, was bei der Anwendung von homogenen Struktursystemen nicht gegeben ist. Dieses Prinzip wurde von Krömer (4) bereits im Jahre 1969 vorgestellt.

Verfolgt man die Logik von Krömer (5) weiter, so kann man die Effizienz der bereits vorgestellten Betrachtungen auf folgende Art und Weise demonstrieren. Ausgangspunkt für die nachfolgenden Überlegungen ist ein npn- HBT mit einem Heteroübergang zwischen Emitter und Basis, hierbei besteht das Emittermaterial aus einer wide-gap Halbleiterschicht. Der Übergang vom Emitter zur Basis erfolgt durch allmähliche Änderung der Zusammensetzung der Materialkomponenten (grading technique).

(1)Iyer et al. „Heterojunction bipolar transistors using SiGe alloys“, IEEE Trans. on Elektron Devices, vol. 36, no. 10. Oct. 1989

(2)Kroemer, „Heterostructure bipolar transistors and integrated circuits“, Proc.of the IEEE, vol. 70, 1, Jan. 1982,

(3)People, „Physics and application of GexSi1-x/Si strained layer heterostructures“, IEEE Journal of Quantum Electronics“, vol. 22, no. 9, Sept. 1986,

(4)Kroemer, „A proposed class of heterojunction injection layers“, Proc. IEEE, vol. 51, pp. 1782-1783, Dec. 1969,

(5) Kroemer, „Theory of a wide gap emitter for transistors“, Proc. IRE, vol. 45, no. 11, pp. 1535-1537, Nov. 1957

Die wichtigsten Stromanteile eines npn- HBTs sind:


a) In – Elektronenstrom, der vom Emitter in die Basis injiziert wird,

b) Ip – Löcherstrom, der von der Basis in den Emitter injiziert wird,

c) Is – Rekombinationsstrom in der Emitter- Basis- Raumladungszone,

d) Ir – Verluste des injizierten Elektronenstroms In durch Rekombination in der Basis.

Der Stromanteil In ist im Wesentlichen der Strom, der als Hauptkomponenete in den Kollektorstrom eingeht. Als parasitäre Beiträge können die anderen Stromanteile verstanden werden. Man kann die Ströme in den Transistorgebieten wie folgt definieren:


Emitterstrom:


-IE = In + Ip + Is


(2.1.1)


Kollektorstrom:


IC = In + Ir


(2.1.2)


Basisstrom:


IB = Ip + Ir + Is


(2.1.3)

Damit kann man die Stromverstärkung für jeden Transistor so definieren:

Gleichung 2.1.4

BN max – maximale Stromverstärkung bei Vernachlässigung der Rekombinationsstöme

Es wird bei einem wide-gap Emitter-HBT hauptsächlich der Wert der maximalen Stromverstärkung bei Vernachlässigung der Rekombinationsstöme verbessert. Um dies zu verdeutlichen, kann man folgende Überlegung anstellen.

NE und NB seien die Dotierkonzentrationen für das Emitter- und Basisgebiet. Die Injektions-ströme in dem Emitter und der Basis lassen sich für nichtentartete Halbleitergebiete in erster Näherung wie folgt darstellen:

Gleichung 2.1.5
Gleichung 2.1.6

vnB und vpE bezeichnen die Geschwindigkeiten der Ladungsträger in dem jeweiligen Gebiet, die durch die kombinierte Wirkung von Drift und Diffusion bestimmt sind. Die Terme qVn und qVp (siehe Abb. 2) stellen die Potentialbarriere für Elektronen und Löcher am Heteroübergang dar. Bei einem wide-gap Emitter kann der Unterschied zwischen den Bandgapenergien im Emitter und der Basis durch

Gleichung 2.1.7

charakterisiert werden. Aus den Gleichungen (2.1.5), (2.1.6) und (2.1.7) folgt:

Gleichung 2.1.8

wobei der Term exp( Δ Eg / kT) einen zusätzlichen Freiheitsgrad beim Bauelementedesign darstellt, im Unterschied zu konventionellen Bipolartransistoren, bei denen Δ Eg= 0 ist.

Δ Eg und damit auch BN max lassen sich durch geeignete Wahl der Materialkomponenten an dem Heteroübergang variieren. Damit entsteht ein zweiter Freiheitsgrad im Zusammenhang mit der Optimierung des parasitären Basiswiderstandes RB, der von der Dotierkonzentration in der Basis abhängig ist.

Es ist damit möglich, sehr hohe Stromverstärkungen BN max zu erreichen, die in Kombination mit einem geringen Basiswiderstand RB die Anwendung von Heterojunction Bipolartransistoren bei sehr hohen Frequenzen interessant machen.

Kategorien
Aufbau und Wirkungsweise Diplomarbeit

Aufbau von Heterojunction Bipolartransistoren

2.2 Aufbau von Heterojunction Bipolartransistoren

In der Abbildung 1 ist ein typischer Aufbau eines SiGe-HBT schematisch dargestellt.

Der schematische Querschnitt eines SiGe-HBTs

Abb. 1 Der schematische Querschnitt eines SiGe-HBTs

Wie auch aus der Abbildung 1 zu ersehen ist, besteht die Basis aus einer hochdotierten SiGe- Schicht, während Emitter und Kollektor aus Si- Schichten bestehen. An einem vereinfachten Bändermodell eines np- Si/SiGe- Übergangs läßt sich die Wirkung des Heteroübergangs verdeutlichen.

Bändermodell eines np- Si/SiGe- Übergangs

Abb. 2 Bändermodell eines np- Si/SiGe- Übergangs

Wie aus der Abbildung 2 zu ersehen ist, besitzt die SiGe- Schicht einen geringeren Band-abstand als die Si- Schicht. Dies ist die Ursache für die Entstehung einer Bandgapdifferenz ΔEg, die dann entsprechend der Gleichung (2.1.8) die Stromverstärkung BN beeinflussen kann. Aus der Abbildung 2 ist ebenfalls zu erkennen, daß die Potentialbarriere, die die Löcher in ihrer Transportwirkung behindert größer ist, als die Potentialbarriere für die Elektronen. Die Werte für EC sind sehr klein und bisher zu ungenau, so daß allgemein ΔEg=ΔEV gesetzt wird. Im Vergleich zu einem konventionellen Bipolartransistor kann der Emitterwirkungsgrad eines SiGe- Heterobipolartransistors durch geeignete Dotierungsverhältnisse wesentlich verbessert werden. Das bedeutet einen Gewinn an Stromverstärkung im Vergleich zu einem Homobipolartransistor.

Kategorien
Allgemeines Diplomarbeit

Thema

Bücher transparent

Technische Universität Ilmenau

Fakultät für Elektrotechnik und Informationstechnik

Fachgebiet Festkörperelektronik

Diplomarbeit

Thema: Untersuchung der Strategien zur Erzeugung von Gittern für die zweidimensionale Devicesimulation

vorgelegt von Leidig, Michael

Studiengang: Elektrotechnik

Studienrichtung: Festkörperelektronik

Verantwortlicher Hochschullehrer: Prof. Dr.-Ing. habil. D. Schipanski

Mitbetreuender wiss. Mitarbeiter: Dipl.-Ing. M. Roßberg

Registrier-Nr.: 141-93 D5

Technische Universität Ilmenau – Link

Kategorien
Diplomarbeit Ergebnisse

Strategien zur Gittererzeugung

6.2 Strategien zur Gittererzeugung

In den vorhergehenden Abschnitten wurde ein Algorithmus zur Kleinsignalanalyse beschrieben, sowie Simulationen und Vergleiche mit gemessenen Kleinsignalparametern durchgeführt. In dem folgenden Kapitel werden anhand der Kleinsignalparameter Berechnungen vorgestellt bei denen verschiedene Strategien zur Erzeugung von Differenzengittern verfolgt wurden. Mittels des zu HETRA gehörenden Gittergenerators besteht die Möglichkeit, ein geeignetes Gitter zu erzeugen. Das erfolgt über eine geometrische Reihe, deren Rekursionsformel lautet:

Rekursionsformel

hi – Abstand zwischen zwei Gitterpunkten
k – Faktor für die geometrische Reihe

Damit soll erstens ermöglicht werden, daß die Anzahl der gesamten Gitterpunkte minimal wird und zweitens auch geringe Potentialänderungen (an Kontakten und pn-Übergängen) zwischen zwei benachbarten Gitterpunkten im Rahmen der Zahlendarstellung erfaßbar werden. Die numerische Genauigkeit muß hierbei stets größer sein als die auftretenden Potentialdifferenzen. Dabei ist das Gitter an den Stellen, an denen größere Änderungen der Potentiale zu erwarten sind hinreichend klein zu machen, um den Diskretisierungsfehler zu minimieren. In den Bahngebieten erfolgt eine Vergrößerung des Abstandes zwischen zwei benachbarten Gitterpunkten.

schematische Darstellung des erzeugten Differenzengitters

Abb. 14 schematische Darstellung des erzeugten Differenzengitters

Bei dem verwendeten Gitter handelt es sich um ein Kastenprofil mit dem bereits Simulationen durchgeführt wurden. Die Faktoren zur Manipulation der Gittererzeugung (2, 1.5, 1, 0.5, 0.25) bedeuten, daß eine Multiplikation des minimalen und maximalen Gitterpunktabstandes mit den Faktoren vorgenommen wurde. Mit diesen Gittern wurden jeweils die Ortskurven der y-Parameter (Abb. 15 bis 20) und statische Kennlinien berechnet. Bei den berechneten Kleinsignalparametern handelt es sich um Berechnungen für den inneren Transistor, d.h. ohne die in den vorhergehenden Kapiteln berücksichtigten Bahnwiderstände rC und rB der inaktiven Gebiete.

Aus den gewonnenen Kurven der Abbildungen 15 bis 20 ist zu erkennen, daß die Abweichungen, die aus der unterschiedlichen Feinheit des Differenzengitters resultieren, besonders im höheren Frequenzbereich (10 GHz) Unterschiede von 5-10% hervorrufen können. Als Bezugspunkt wurde hier das Gitter zugrunde gelegt in dem der Faktor der geometrischen Reihe mit 0.25 multipliziert wurde und an dem der geringste Diskretisierungsfehler zu erwarten ist. Hingegen sind die berechneten Abweichungen bei |y11| und |y12| und einer Frequenz von 3 GHz wesentlich geringer. Hier liegen die prozentualen Werte bei maximal 0.8% bei ansonsten unveränderten Bedingungen.

Aus den Darstellungen ist zu erkennen, daß wie erwartet die Abweichungen der Ortskurven mit der Verfeinerung geringer werden. Die Abstände der Kurven lassen den Schluß zu, daß mit der Feinheit des Gitters diese Verschiebungen immer geringer werden. Der Bezugspunkt hierbei ist der Gleiche wie oben angeführt. Die Abstände zwischen zwei benachbarten Punkten sind hier im Vergleich zu den anderen Gittern am geringsten, um den Diskretisierungfehler so klein wie möglich zu halten. Die statischen Kennlinien (Abb. 19 und 20) zeigen keine so starken Abhängigkeiten des Stromverlaufs von dem Differenzengitter. Bei der Kurve IB=f(UBE) ist im unteren Bereich eine Abhängigkeit vom verwendeten Differenzengitter zu erkennen. Alle Zusammenhänge sind jedoch hiermit noch nicht ausreichend beschrieben, dazu bedarf es noch weiterer Untersuchungen.

Ortskurven von y11

Abb. 15 Ortskurven von y11 bei unterschiedlicher Feinheit der Diskretisierungsgitter

Einflüsse des Diskretisierungsgitters auf

Tab. 1 Einflüsse des Diskretisierungsgitters auf |y11| und proz. Abweichungen bei 3 GHz und 10 GHz

Ortskurven von y12

Abb. 16 Ortskurven von y12 bei unterschiedlicher Feinheit der Diskretisierungsgitter

Einflüsse des Diskretisierungsgitters auf

Tab. 2 Einflüsse des Diskretisierungsgitters auf |y12| und proz. Abweichungen bei 3 GHz und 10 GHz

Ortskurven von y21

Abb. 17 Ortskurven von y21 bei unterschiedlicher Feinheit der Diskretisierungsgitter

Einflüsse des Diskretisierungsgitters auf   y21

Tab. 3 Einflüsse des Diskretisierungsgitters auf y21 und proz. Abweichungen bei 3 GHz und 10 GHz

Ortskurven von y22

Abb. 18 Ortskurven von y22 bei unterschiedlicher Feinheit der Diskretisierungsgitter

Einflüsse des Diskretisierungsgitters auf   y22

Tab. 4 Einflüsse des Diskretisierungsgitters auf y22 und proz. Abweichungen bei 3 GHz und 10 GHz

Ib = f(UBE) bei unterschiedlicher Gitterverfeinerung

Abb. 19 Ib = f(UBE) bei unterschiedlicher Gitterverfeinerung

Ib = f(UBE) bei unterschiedlicher Gitterverfeinerung

Abb. 20 Ib = f(UBE) bei unterschiedlicher Gitterverfeinerung

Tab. 5 Einflüsse des Diskretisierungsgitters auf Basis- und Kollektorstrom in Abhänigkeit von UBE (Gummelplot), und proz. Abweichungen

Kategorien
Diplomarbeit Ergebnisse

Ergebnisse der Kleinsignalberechnungen

6.1 Ergebnisse der Kleinsignalberechnungen

Die durchgeführten Berechnungen dienten als erstes zur Überprüfung des vorgestellten Modellkonzepts zur Kleinsignalanalyse. Darauffolgend wurde ein Vergleich mit an Proben gemessenen Werten vorgenommen. Diese wurden von der Ruhr Universität Bochum vorgenommen und lagen als Datenfile auf einer Diskette vor. Gemessen wurden die Werte an der Probe B 2136. Die Abbildungen 5 bis 7 zeigen in einer Gegenüberstellung von gemessenen und simulierten Werten die Ortskurven der Kleinsignalparameter y11, y21, y12 und y22. Die Ortskurvendarstellung ist vorteilhaft, um sich einen schnellen Überblick über die Frequenzabhängigkeit der Vierpolparameter verschaffen zu können.

Da die Messungen in Kollektorschaltung vorgenommen werden müssen, wurden die simulierten Werte in die entsprechende Schaltungsart umgerechnet. In einer vorher durchgeführten statischen Berechnung wurde ein statischer Arbeitspunkt eingestellt bei dem fT maximal wird. Als Basis- Kollektorspannung (UBC) wurde -1V eingestellt. Der dargestellte Frequenzbereich von Messung und Simulation erstreckt sich von 130 MHz bis 19,99 Ghz.

Der Parameter y11 (Abb. 6) spiegelt das Verhältnis von Basisstrom zur Änderung der Basis- Emitterspannung wieder. Betragsmäßig beschreibt dieser Parameter mit anwachsender Frequenz einen steigenden Verlauf. Der Schnittpunkt der Ortskurve mit der reellen Koordinatenachse gibt die Größe des am Eingang liegenden Basisbahnwiderstandes wieder. Die Kurzschlußsteilheit y21 (Abb.7) wird mit zunehmender Frequenz vom Betrag her kleiner. Vor allem die Tatsache, daß die Ladungsträgeränderung im Transistor der hohen Frequenz nicht mehr folgen kann, ist hiermit verbunden. Der Schnittpunkt der Ortskurve von y21 bei f≈0 wird maßgeblich durch den Emitterwiderstand RE bestimmt. Die Parameter y11 und y21 werden stets von der inneren Transistorwirkung bestimmt und durch äußere Elemente (Sperrschichtkapazität, parasitäre Widerstände und Kapazitäten) nur modifiziert.

Der Parameter y12 (Abb. 8) zeigt im oberen Frequenzbereich eigentlich überhaupt keine Übereinstimmung mit den gemessenen Werten, da dieser Parameter bei hohen Frequenzen jedoch von der Basis- Kollektorkapazität bestimmt wird, ist somit auch die große quantitative Abweichung im oberen Frequenzbereich erklärbar. Diese Rückkoppelkapazität besonders in den elektronisch inaktiven Teilen des Transistors ist bisher im Modell nicht vollständig berücksichtigt. Es handelt sich hierbei um die in Abbildung 1 dargestellten Kapazitäten die nicht unmittelbar unter dem elektronisch aktiven Teil des Emitters liegen. Eine Erfassung in einem eindimensionalen Modell ist durch den verteilten Charakter dieser parasitären Kapazität schwer möglich. Eine bessere Möglichkeit erhält man bei der Implementierung des vorgestellten Modells in einen 2D- Devicesimulator. Im Bild 9 ist Lage der Basis-Kollektorkapazität noch einmal schematisch dargestellt.

cCB – Basis- Kollektorkapazität

schematische Darstellung der Basis- Kollektorkapazität

Abb. 5 schematische Darstellung der Basis- Kollektorkapazität

Der Parameter y22 (Abb. 9) beschreibt das Verhältnis von Kollektorstrom zur Änderung der Emitter- Kollektorspannung und wird ebenso wie y12 bei sehr hohen Frequenzen zum großen Teil von parasitären Elementen bestimmt. Die Abbildungen 10 bis 13 sollen einen Vergleich der gemessenen und berechneten Parameter hinsichtlich ihres Betrages in Abhängigkeit von der Frequenz ermöglichen und die zuvor diskutierten Sachverhalte unterstreichen.

Ortskurve von y11

Abb. 6 Ortskurve von y11c bei Ucb = -1 V; f = 130 MHz … 20 GHz; RB= 31Ω ; RC = 4,5Ω; IE= 25 mA

Ortskurve von y21

Abb. 7 Ortskurve von y21c bei Ucb = -1 V; f = 130 MHz … 20 GHz; RB= 31Ω; RC = 4,5Ω; IE= 25 mA

Ortskurve von y12

Abb. 8 Ortskurve von y12c bei Ucb= -1 V; f = 130 MHz … 20 GHz; RB = 31Ω; RC = 4,5Ω; IE= 25 mA

Ortskurve von y22

Abb. 9 Ortskurve von y22c bei Ucb= -1 V; f = 130 MHz … 20 GHz; RB = 31Ω; RC = 4,5Ω; IE= 25 mA

Betrag von y11

Abb. 10 Betrag von y11 = f(f), Ucb= -1 V; f = 130 MHz … 20 GHz; RB = 31 ; RC = 4,5Ω; IE= 25 mA

Betrag von y12

Abb. 11 Betrag von y12 = f(f), Ucb= -1 V; f = 130 MHz … 20 GHz; RB= 31 ; RC = 4,5Ω; IE= 25 mA

Betrag von y21

Abb. 12 Betrag von y21 = f(f), Ucb= -1 V; f = 130 MHz … 20 GHz; RB = 31 ; RC = 4,5Ω; IE= 25 mA

Betrag von y22

Abb. 13 Betrag von y22 = f(f), Ucb= -1 V; f = 130 MHz … 20 GHz; RB = 31 ; RC = 4,5 ; IE= 25 mA

Kategorien
Diplomarbeit Modellkonzept

Implementierung in den Devicesimulator HETRA

5.8 Implementierung in den Devicesimulator HETRA

In der Einleitung wurde darauf verwiesen, daß in (1) versucht wurde, einen Algorithmus der auf der Sinussoidal Steady- State Analysis basiert, in den Devicesimulator HETRA zu implementierten. Es wurde dabei ein FORTRAN- Programm zur Berechnung der Kleinsignalparameter y11 und y21 erstellt. FORTRAN erschien vorteilhaft, da hier mit dem standartmäßigen FORTRAN-COMPLEX Zahlentyp operiert werden konnte. Durch die Verwendung des FORTRAN-COMPLEX Zahlentypes war die Genauigkeit in der Zahlendarstellung auf sechs Mantissenstellen beschränkt.

Änderungen der Potentialdifferenzen zwischen zwei benachbarten Punkten des Differenzengitters, die in der sechsten und siebenten Stelle auftraten blieben unberücksichtigt. SiGe- HBTs mit hochdotierten Basen (NB ≥ 1019/cm3), in denen sehr niedrige Potentialdifferenzen zwischen benachbarten Punkten auftreten, konnten mit dem implementierten Modell aus (1) nicht berechnet werden. Es wurde vermutet, daß die Ursache hierfür das Diskretisierungsgitter ist. So müßte eine Vergrößerung des Gitterpunktabstandes die Potentialdifferenzen zwischen den Gitterpunkten erfaßbar machen.

Nach einigen Berechnungen und verschiedenen Literaturstudien zeigte sich jedoch, daß mit einer Gittervergröberung die Diskretisierungsfehler stark zunehmen und somit der gewünschte Effekt nicht eintritt. Aus diesem Grunde wurde in dieser Arbeit zuerst mit einer Neuimplementierung eines vollständigen Modellkonzeptes zur Kleinsignalanalyse begonnen bei dem die oben angeführten Mängel beseitigt wurden. Anschließend werden die Einflüsse der jeweilig verwendeten Struktur des Differenzengitters auf die Ergebnisse der statischen Berechnung und der Kleinsignalanalyse untersucht (Kapitel 6.2).

Der in vorhergehenden Kapiteln beschriebene Formelapparat einschließlich der Randbedingungen für den dynamischen Fall wurde in ein C-Programm portiert. C bot sich an, da bereits Teile des Simulators HETRA in C geschrieben bzw. portiert wurden. Da es in der hier verwendeten Programmiersprache C keinen vorgesehenen Datentyp für komplexe Zahlen gab ist es aus Gründen des besseren programmtechnischen Umgangs vorteilhaft gewesen, eine Bibliothek mit speziellen Rechenoperationen für komplexe Zahlen anzulegen. Als Wichtigstes beinhaltet diese Bibliothek eine Typdefinition für den Datentyp COMPLX. Dieser ist zusammengesetzt aus einem Realteil (.REAL) und einem Imaginärteil (.IMAG) die beide als DOUBLE definiert sind und zusammen eine komplexe Zahl darstellen. Auf diese Weise erhält man eine wesentlich höhere Genauigkeit des Zahlenformats (bis zu 15 Mantissenstellen möglich).

Weiterhin beinhaltet sind in der Bibliothek Rechenoperationen für komplexe Zahlen. Das sind neben den vier Grundrechenarten, die Exponentialfunktion sowie die Betragsbildung und Umwandlung in die Eulersche Form einer komplexen Zahl. Diese Komplexbibliothek wurde in den Bauelementesimulator HETRA aufgenommen. Aufgrund der höheren Genauigkeit in der Zahlendarstellung ist es nun möglich geworden, die Mängel aus (2) zu beseitigen.

Der Lösungsalgorithmus wurde komplett in den bestehenden Devicesimulator HETRA integriert. Für den Fall der Kleinsignalanalyse erfolgt zuerst die Einstellung eines stationären Arbeitspunktes. Im Anschluß daran beginnt die Aufstellung des Gleichungssystems für die dynamische Analyse. Der Gaußalgorithmus der hier zum Lösen verwendet wird, wird einmal durchlaufen. Am Ende dieser Berechnungen erhält man den Kleinsignallösungsvektor ΦAC. Dann erfolgt die Berechnung des Basisstromes und des Kollektorstromes entsprechend dem im folgenden Kapitel beschriebenen Weg. Daran anschließend werden die Kleinsignalparameter (z.B. Leitwertparameter) für den eingestellten Arbeitspunkt berechnet und ausgegeben.

Für die graphische Darstellung wurde das Programm SPICE benutzt. Um die aus dem Simulator kommenden Daten dort weiter verarbeiten zu können, ist die Erstellung einer Konvertierungsroutine nötig gewesen. Die implementierten Routinen sind beliebig erweiterungsfähig ebenso alle erstellten Macros und Zusatzprogramme. Die aus den Berechnungen hervorgegangenen Werte sind in Kapitel 6.1 erläutert und graphisch dargestellt.

(1) Tschagaljan, „Implementierung von Kleinsignalmodellen in einen Bauelementesimulator“, Diplomarbeit, Technische Hochschule Ilmenau, 1992

(2) Tschagaljan, „Implementierung von Kleinsignalmodellen in einen Bauelementesimulator“, Diplomarbeit, Technische Hochschule Ilmenau, 1992

Kategorien
Diplomarbeit Modellkonzept

Berechnung der y-Parameter

5.7 Berechnung der y-Parameter

Als Ausgangspunkt für die Berechnung der y-Parameter dienen die Definitionsgleichungen (5.7.1) und (5.7.2). Mit deren Hilfe ist es möglich, das in Abbildung 3 dargestellte Kleinsignalersatzschaltbild aufzustellen:

Kleinsignalersatzschaltbild

Abb. 3 Kleinsignalersatzschaltbild für die y-Parameter in Emitterschaltung

Kategorien
Diplomarbeit Modellkonzept

Berechnung der Stromverstärkung

5.6 Berechnung der Stromverstärkung

Bei der Berechnung der Stromverstärkung wurde bei der Implementierung in den Bauelementesimulator HETRA von der allgemein bekannten Beziehung ausgegangen:

Image

Die Berechnung des Basisstromes wird auf die Kontinuitätsgleichung der Löcher, in der die Stromdichte bereits enthalten ist, zurückgeführt:

Berechnung des Basisstromes

Im Frequenzbereich sieht die diskretisierte Form von (5.6.2) wie folgt aus:

diskretisierte Form

Diese Gleichung (5.6.3) wird linearisiert und das Störglied der Gleichung am Basiseinspeisungspunkt beschreibt die Basisstromdichte.

Gleichung (5.6.3) linearisiert

Multipliziert man die Basisstromdichte mit der für das jeweilige Dotierungsprofil gegebenen Emitterfläche erhält man den Basisstrom iB.

Bei der Berechnung der Kollektorstromdichte müssen zur vollständigen Beschreibung die Beträge der Elektronenstromdichte und der Löcherstromdichte berücksichtigt werden:

Kollektorstromdichte

mit

Kollektorstromdichte
Kollektorstromdichte

Bei der Berechnung der Elektronenstromdichte und der Löcherstromdichte mittels der aufgestellten Gleichungen (5.6.6) und (5.6.7) werden die Formeln (5.2.4) und (5.2.6) aus dem Kapitel 5.2 verwendet. Diese Formeln ((5.6.6) und (5.6.7)) wurden teilweise ergänzt und anschließend neu in den Bauelementesimulator HETRA implementiert. Den Kollektorstrom erhält man, indem man die Änderung der Kollektorstromdichte mit der für das jeweilige Dotierungsprofil gegebenen Emitterfläche multipliziert.

Kategorien
Diplomarbeit Modellkonzept

Kleinsignalrandbedingungen

Bücher transparent

5.5 Kleinsignalrandbedingungen

Bei der Berechnung des Eingangskurzschlußleitwertes (y11) und der Kurzschlußsteilheit (y21) werden die Kleinsignalpotentiale am Emitter und Kollektor Null gesetzt, so daß zwischen diesen beiden Punkten eine feste Gleichspannung existiert. Bei der Berechnung von y12 und y22 bleiben hingegen die Kleinsignalpotentiale an Basis und Emitter auf Null. Am eindimensionalen Modell erfolgt die Basispotentialeinprägung über das Quasifermipotential der Majoritätsträger φp. Aufgrund der Potentialeinprägung werden die Poissongleichung und die beiden Kontinuitätsgleichungen am Basiseinspeisungspunkt gestört. Die Kontinuitätsgleichung der Löcher (5.4.10) wird darüber hinaus zusätzlich am Punkt vor und nach dem Basiseinspeisungspunkt gestört. Die Basis erhält eine Kleinsignalspannung aufgeprägt. Als Quasifermipotential der Majoritätsträger wird ein Kleinsignalrandpotential von beliebiger Größe (lineares Gleichungssystem) verwendet,
z.B. uBE = 1xUT + 0xj, und in die Halbleitergrundgleichnungen (5.4.1) – (5.4.3) eingesetzt (1).

Halbleitergrundgleichnungen
Halbleitergrundgleichnungen
Halbleitergrundgleichnungen
Halbleitergrundgleichnungen
Halbleitergrundgleichnungen

mit φpiB = uBE

(1) Gokhale, „Numerical solutions for a one dimensional Silicon npn-transistor“, IEEE Trans. on Elektron. Devices, vol. ED-17, no. 8, Aug. 1970

Die Gleichungen (5.5.1) – (5.5.5) stellen die Randbedingungen am Basiseinspeisungspunkt für eine uBE Einspeisung dar. Sie wurden im Verlauf der Arbeit in den Simulator HETRA aufgenommen. f ist hierbei als eine Störfunktion für das Gleichungssystem (5.4.11) zu betrachten. Für die Berechnung der gesamten y – Parameter sind außerdem kollektorseitig Randbedingungen festzulegen.

Randbedingungen
Randbedingungen
Randbedingungen

Die Randbedingungen (5.5.6) – (5.5.8) beschreiben die Einprägung einer Kleinsignalspannung an der Kollektorseite des Modells.

Es handelt sich hierbei, ähnlich den Basisrandbedingungen um eine Störfunktion, die in das zu lösende Gleichungssystem eingesetzt wird. Voraussetzung ist hierbei die Annahme, dass es sich beim Kollektorkontakt um einen idealen ohmschen Kontakt im thermodynamischen Gleichgewicht handelt, für den folgende Beziehung gilt: Δφn = Δφp = Δψ = uCE. Mit Hilfe dieses vorgestellten und implementierten Modells lassen sich verschiedene Berechnungen im dynamischen Fall durchführen. Als Kleinsignalspannung am Kollektor kann ebenfalls ein Kleinsignalpotential beliebiger Größe verwendet werden.